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Abstract

Understanding complex brain networks using functional magnetic resonance imaging (fMRI)

is of great interest to clinical and scientific communities. To utilize advanced analysis methods

such as graph theory for these investigations, the stationarity of fMRI time series needs to be

understood as it has important implications on the choice of appropriate approaches for the

analysis of complex brain networks. In this paper, we investigated the stationarity of fMRI time

series acquired from twelve healthy participants while they performed a motor (foot tapping

sequence) learning task. Since prior studies have documented that learning is associated with

systematic changes in brain activation, a sequence learning task is an optimal paradigm to assess

the degree of non-stationarity in fMRI time-series in clinically relevant brain areas. We predicted

that brain regions involved in a “learning network” would demonstrate non-stationarity and

may violate assumptions associated with some advanced analysis approaches. Six blocks of

learning, and six control blocks of a foot tapping sequence were performed in a fixed order. The

reverse arrangement test was utilized to investigate the time series stationarity. Our analysis

showed some non-stationary signals with a time varying first moment as a major source of non-

stationarity. We also demonstrated a decreased number of non-stationarities in the third block as

a result of priming and repetition. The implication of our findings is that future investigations
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analyzing complex brain networks should utilize approaches robust to non-stationarities, as

graph-theoretical approaches can be sensitive to non-stationarities present in data.

Keywords: Functional magnetic resonance imaging, time series, stationarity, reverse arrange-

ment test, foot tapping.

1 Introduction

Investigating brain networks involved in complex cognitive, affective, or motor tasks are of great

interest from scientific and clinical perspectives. To define brain networks, researchers have used

various experimental modalities such as structural and functional magnetic resonance imaging

(MRI) [1], [2], [3], positron emission tomography (PET) [3], diffusion tensor imaging [1], magne-

toencephalography [4], and electroencephalography [5]. The most common modality is fMRI, first

shown in 1992 to be useful for exploring functional brain activity [6]. Since then, fMRI has been

widely used to study brain networks involved in a variety of psychological and motor behaviors us-

ing several signal processing approaches [1], [2], [3], [4], [5]. MRI has enabled us to understand the

brain macroscopic organization by enabling us to study the structural and functional networks [7].

The use of fMRI to study brain activation patterns has several advantages over other methods

such as PET, which requires radioactive ligands to be injected into the participants. fMRI: (1) is

considered a non-invasive technology for acquiring brain images, (2) can be used to examine task

performance in less time, acquiring scan images more rapidly than the PET, and (3) the scans have

high spatial resolution [8]. The blood oxygenation and flow is the fundamental basis for fMRI.

Thus the brain activation signal increases around the area of blood vessels and brain tissues with

higher blood oxygenation levels and blood flow [3], [9], [10]; the more activated brain regions have

higher blood flow and blood oxygenation than non-active regions [3], [9], [10]. Hence, the measured

signal by fMRI depends on the change of oxygenation which is referred to as the Blood Oxygen

Level Dependent (BOLD) signal [9], [11].

The vast majority of recent contributions on complex brain networks are based largely on graph

theory analysis [12]. The graph theoretical analysis of MRI data has been widely used to understand

both normal brain networks and dysfunctional brain networks resulting from pathologies such as

Alzheimer’s disease [7], [13], [14], [15], schizophrenia [7], [16], [17], stroke [7], [18], epilepsy [7], [19]

and tumors [7]. For example, Buckner et al. [15] were able to demonstrate a correlation between

the site of the targeted regions and the location of major hubs in Alzheimer’s disease. He et al. [13]

have also shown different structural variation of brain small-world organization in individuals with
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Alzheimer’s disease, which has been shown to accurately classify people with Alzheimer’s disease.

Similarly, Liu et al. [20] have shown the network properties in individuals with schizophrenia relative

to controls.

In addition to understanding dysfunctional networks in pathological conditions, the brain net-

works involved in affect regulation, motor control and execution, and learning and memory are

important for understanding normal brain development and function. Hence, researchers have used

graph theoretical approaches to examine learning-related changes in network connectivity [21]. In

order to establish a brain network using modern graph theory, there are a number of steps to be

taken [12], [22], [23]: (1) define the network nodes, (2) estimate association/correlation between

nodes, (3) compile pairwise associations between nodes and generate an association matrix, and

(4) calculate the network characteristics. All of these steps require a choice of a suitable approach

in order to obtain an adequate network representation. Yet, despite this emerging literature, many

researchers using graph theoretical approaches for fMRI data have not closely examined whether

their data violate the assumptions of graph-theory. In particular, in order to make an informed

decision regarding the analytical approach we need to first understand whether the fMRI time

series are stationary, i.e., if the statistical properties such as mean and variance of a time series are

time-invariant [24]. The assumption of fMRI stationarity is especially important in the second step

to understand whether the choice of an analytical approach needs to be robust to non-stationarities.

Furthermore, the stationarity of fMRI time series is relevant when discussing simple meaningful

statistics of fMRI time series such as means, variances, and correlations. These statistics are more

useful as a description of the data if the time-series is stationary [25], [26]. The stationarity is also

relevant to the frequency analysis of the fMRI time series as the Fourier transform is suitable for

stationary signals [27]. In this work, we used reverse arrangement analysis to quantify the degree

of non-stationarity in fMRI data in the context of network connectivity. Such investigation will

help us define the most appropriate approaches that should be considered in the establishment of

connectivity matrices and complex brain networks.

2 Time series and stationarity

A set of observations recorded at a specific time is usually denoted as a time series [25]. If the

observations are recorded continuously with time, then we say it is a continuous time series. On

the other hand, if x(n) denotes observations made within time interval 0 ≤ n ≤ N − 1, where N

represents the length of the signal, then x(n) is a discrete time series since the observations are
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made at time intervals from the discrete set γ. This time series can be considered as a realization

of random variables {Xn, n ∈ γ} [25]. Stationarity is either strong stationarity (strict stationarity)

or weak (wide sense) stationarity. If the statistical properties of a time series are time-invariant,

then this time series is said to have strict stationarity [24] , i.e.:

FXn1 ,...,Xnk
(x1, x2, . . . , xN ) = FXn1+h,...,Xnk+h

(x1, x2, . . . , xN ) (1)

for all positive integers h and for all (n1, . . . , nk) ∈ Z. In other words, strict stationary time

series should express similar statistical properties in the graphs of two equal-length time interval

of realization [25]. A time series is considered to have weak or (wide-sense) stationarity if the only

first two moments are time-invariant [26], such that the mean is constant, i.e.,

E(Xn1) = E(Xn1+h) (2)

and the covariance only depends on the time lag between two observations [25], i.e.,

Cov(Xn1 , Xn2) = Cov(Xn1+h, Xn2+h) (3)

A usual first in the time series analysis is the visual inspection of the series in order potentially

determine suitable analysis methods and/or statistical variables beneficial for summarizing infor-

mation contained in the series [26].

To understand which mathematical approaches should be adopted, we need to understand the

stationarity of the time series [28]. To examine the time series stationarity, one of the following non-

parametric tests is applied: a run test, a reverse arrangement test (RAT), or a modified RAT [27].

The RAT is a non-parametric test that has often been used to evaluate the wide-sense stationarity of

a time series [29], [30], especially to investigate the weak stationarity of physiological and biomedical

signals [4], [30], [31], [32], [33], [34]. Basically, the RAT test is used to search for monotonic trends

in the mean square values calculated within non-overlapping intervals of a particular time series

signal of interest [29], [35]. In this study we performed the RAT test. Below are the steps we took

to use the RAT test to examine the stationarity of the fMRI motor sequence learning task-related

brain activation signal pattern.

1. A time series is divided into M equal non-overlapping segments. The number of segments M

can be determined using the following equation:

M =
N

L
(4)

where N is the length of the time series and L is the desired segment length.
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2. Calculate the square mean value Y (k) for each segment:

Y (k) =
1

L

(k+1)L−1∑
i=kL

x2(i) for 0 ≤ k ≤M − 1 (5)

3. The total number of reverse arrangements A is then counted within the sequence of mean

square values Y0, Y1, . . . , YM−1. A reverse arrangement occurs when the square mean value

of one segment is greater than the mean square values of the subsequent segment, i.e. when:

Ya > Yb for a < b. Hence, using this condition, Yk will form the indicator:

s(k, d) =

1 if Y (k) > Y(k+d)

0 otherwise
(6)

For 1 < d ≤ D, where D = M−k−1; and therefore, for kth time step, the reverse arrangement

test is given by:

A(k) =
D∑
d=1

s(k, d) (7)

and the total number of reverse arrangement test A is given by:

AT =

M−1∑
k=0

A(k) (8)

4. The calculated value of the total reverse arrangement AT from the previous step is then

compared to the value that would be expected from a realization of a weakly stationary

random process. If we considered the sample as weakly stationary, then the expected value

of A has a normal distribution [29] with the mean given by:

µT =
L(L− 1)

4
(9)

and the variance:

σ2T =
L(L− 1)(2L+ 5)

72
(10)

The null hypothesis that Yk is weakly stationary is rejected if the calculated AT falls outside the

critical values defined by a significance level α. In this research, the critical values were determined

from the calculation of the stationarity test statistic ZT , which is given by:

ZT =
AT − µT

σT
(11)
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where ZT ∼ N(0,1), and the critical values of ZT at the significant level α can be defined as Z1−α/2

and Zα/2, where Z is a standard normal variate. At 5% significance level, the values of Z are given

by Z1−α/2 = −1.96 and Zα/2 = 1.96; and the values of the test statistics ZT will have one of the

following possibilities:

• Zα/2 < ZT < Z1−α/2: the null hypothesis that the time series is wide sense or weakly

stationary is accepted.

• ZT ≥ Z1−α/2: this means that the number of reverse arrangements is greater than that

expected of a stationary signal. This implies an existence of downtrend in the mean square

sequence.

• ZT ≤ Zα/2: this means that the number of reverse arrangements is less than that expected

of a stationary signal. This implies an existence of an upward trend in the mean square

sequence.

3 Methodology

3.1 Participants

Twelve (6 males and 6 females) healthy young adult participants (age range from 19 to 48 years old,

mean age 33 years old) participated in this experiment approved by the Institutional Review Board

at the University of Pittsburgh. A written informed consent was obtained from all participants

after the nature of the experiment had been explained. All participants were right handed.

3.2 Data acquisition

Data acquisition was conducted by an expert fMRI technician from the Department of Radiology,

University of Pittsburgh, Pittsburgh, PA. The MRI scanning was acquired on a 3T Siemens TRIO

scanner using a 12-channel parallel receive head coil. GE-EPI BOLD (FA=90 deg; TR=2000 ms;

TE=29 ms) scans were collected with thirty-eight axial slices (3.4 mm thickness) with a 3.4 mm x

3.4 mm in-plane resolution (64x64). A T2-weighted structural scan (FA=150 deg, TR=3000 ms,

TE=11/101 ms) with voxel size 10.30 x 31.0 x 31.0 mm (matrix 256x224x256) was used to acquire

48 slices covering the whole brain which was collected prior to the functional scans. Head movement

was minimized during the experiment by placing pillows around the head within the head coil.

Each of the 60 second blocks consisted of a series of 7 tapping sequences as shown in Figure 1.
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Figure 1: A flowchart depicting the fMRI protocol of the experiment.

Each sequence consisted of 4 directed movements (e.g. 7 sequences/block x 4movements/sequence

= 28 total movements/block). For the control blocks, 7 random tapping sequences were presented

with no repeats. For the learning blocks, an identical tapping sequence was repeated 7 times. Each

learning block used a different sequence so that each learning block required relearning the sequence.

For each movement, participants were presented with a red box either on the left or right side of

a display screen mounted at the head of the MR scanner, which was viewed using a mirror affixed

above the head coil. Participants were told to perform ankle plantar flexion (foot tap) with either

the right or left foot depending on if the box appeared on the right or left side, respectively. During

the control sequence, the pattern of foot tapping was random and subjects were not expected to
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learn the sequence. During the learning sequence, subjects also repeated the same sequence 7 times

per 60 second block; thus they were expected to learn the pattern, as demonstrated by a decrease

in foot tap onset latencies. Participants were instructed to simply perform the foot tapping task

as indicated by the position of the red box projected on the screen. They were not informed that

the intent was to study motor sequence learning. An overall diagram of the experimental sequence

is shown in Figure 2.

(a) A diagram showing the experimental sequence in learning process.

(b) A diagram showing the experimental sequence in control process.

Figure 2: A diagram showing the experimental sequence in learning and control process.

3.3 Data preprocessing

The Statistical Parametric Mapping (SPM) toolbox was utilized to preprocess and analyze the

acquired fMRI data [11]. Data preprocessing steps included: realignment or (motion correction),

coregistration, normalization, and smoothing. The realignment is performed using the least square

method and a six parameter spatial transformation [36]. The movement artifacts and excessive

head motion in the fMRI scans was removed in this procedure using a well known approach [20].

Next, the mean functional image generated from the previous realignment step is co-registered

to a high resolution anatomical image and all of the other functional images are then resliced to

align with the reference image. To normalize the scans between different subjects, we utilized the

standard template image in MNI space (Montreal Neurological Institute) [10]. Unlike the rigid body

realignment to correct for motion, normalization includes changing the size of the brain to match

the size and position of the template. Hence, smoothing is performed to: increase the signal to

noise ratio, increase inter-subject overlap, and to increase the validity of the analysis. Smoothing

includes blurring the functional MRI images using a Gaussian filter (i.e data is convolved with
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a Gaussian kernel) [37]. After smoothing the images, each voxel becomes a weighted region of

interest (ROI, the voxels under the kernel). The size of the new voxel can be obtained using the

full width half maximum technique (FWHM) [3], which is an indication of the distribution of the

kernel values. Ideally, the FWHM kernel size should be chosen to match the size of the expected

activation

After the scans were processed and registered with the MNI template image, the scans were all

segmented into 90 cortical and subcortical anatomical ROIs using the MarsBAR toolbox [38]. The

mean time series for each of the 90 regions of interest (ROIs) were computed by averaging all voxels

within each region at each time point in the time series, resulting in 170 data points for each of

the 90 anatomical ROIs. Since the human brain has two cerebral hemispheres, the 90 regions are

divided equally between the left and the right hemisphere, i.e. 45 ROIs in each hemisphere. This

was done by using the Automated Anatomical Labeling template (AAL) [39]. Cerebellum regions

were not included as the fMRI scans did not cover these regions.

3.4 Data Analysis

The data analysis consisted of the fMRI scans from three different runs of foot tapping sequences

for each of the 12 participants. The first and the third runs were acquired while the participants

performed the foot tapping sequences of the learning-control-learning-control set. The second

run was acquired while the participants performed foot tapping task in the order of the control-

learning-control-learning set. Using the acquired images, we extracted 90 time series of length 170

data points for each participant.

Next, we used the RAT to investigate the stationarity of the fMRI time series. At an increment

of one, we tested stationarity at various window sizes (10 to 15 scans) for each time series. The

window size selection is based on a window that will maintain enough data points to estimate a

single statistical parameter for the calculation of both the mean squared value within each interval

and the total number of reverse arrangements [35]. The null hypothesis of time invariance was then

tested at 5% level of significance. For time-varying time series, we utilized a regression analysis to

identify whether the time series had a varying mean and/or variance. Furthermore, we identified

the mean and variance as either having an increasing or decreasing trend at the 5% significance

level.
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4 Results

4.1 Effects of window size

Once the 170 data points had been processed, we computed 90 fMRI time series that have been

used for stationarity testing using the RAT Test. It can be clearly seen from Figure 3 (a)-(d)

below that the greatest percentage of non-stationary signals were distinguished during the first and

second runs of the fMRI task, while the least number of non-stationary signals were found within

the last run.

The impact of a window size on stationarity is depicted in Figure 3(d). The percentage of

non-stationary time series decreased with increasing window size; but this effect is not statistically

significant due to a few window size increments (p > 0.75). At larger window sizes, a time series

is divided into fewer segments and fewer comparisons between subsequent mean square values are

carried out. This process will reduce the number of opportunities to detect a reverse arrangement.

The boxplots on the other hand show the stationarity of the test statistics value ZT at different

window sizes for the three runs. In each of the three sub-figures, the two horizontal dashed lines

represent the boundary between stationarity and non-stationarity of the data based on the value

of ZT defined by |Z| < 1.96.

From the boxplots in Figure 3 (a)-(c), we can observe the following:

• The fMRI time series were generally stationary since the median values of the stationary test

statistic ZT fell within the stationarity range at the 5% significance level previously defined

and represented by the two dashed lines at each figure ; i.e. |Z| < 1.96.

• It can be also noticed from the first and last runs R1 and R3, which have the same task

sequence, that only in the last run R3 the 25% and 75% of the ZT values fell within that

range. For the first run R1, only the 25 percentile fell within the range. In each run (R1,R2

and R3) as shown in Figure 3, the number of stationary time series tended to increase with

increasing window size.

• With increasing window size, the variation in the stationary statistic remains relatively con-

stant as shown in Figure 3. Therefore, an intermediate value of 13 points is utilized for further

analysis.
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Figure 3: The effect of window size on the stationarity test statistic, ZT , during the foot tapping

task: first run R1 (a), second run R2 (b), and third run R3 (c); and the effect of window size on

the percentage of non-stationary time series identified for each of the three runs (R1 = run-1, R2

= run-2, R3 = run-3) respectively (d). R1 and R3 are motor learning set runs; R2 is a control set

run.

4.2 Sources of non-stationarity

As defined at the beginning of this paper a time series is said to be strictly stationary if its

statistical properties are time-invariant. We investigated the sources of non-stationarity using the

intermediate window size 13. It can be noticed that the last time course will be trimmed from

every time series because of the indivisibility of time series lengths on the window size. We then

calculated the mean and variance for each segment and tested for a significant linear regression

relationship. What we observed from the extracted fMRI signals as shown in Figure 4 is that the

non-stationarities can be mostly attributed to a change in the mean value over time. Furthermore,

very few signals experiences time-dependant variance alone, and fewer signals demonstrated both
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non-stationary means and variances.

Figure 4: Sources contributing to non-stationarity time series as a percentage of non-stationary

time series identified within each foot tapping task run: R1 = run 1, R2 = run 2, R3 = run 3.

Based on our observation, non-stationarity was found in different brain regions rather in specific

brain regions. However, the regions that were seen stationarity among all participants are listed in

Table 1.

Table 1: Stationary regions among all participants.

Region Name Location on Hemisphere

Amygdala left hemisphere

Caudate left hemisphere

Caudate right hemisphere

Medial Orbitofrontal Gyrus left hemisphere

Insula right hemisphere

Olfactory left hemisphere

Inferior Parietal Gyrus right hemisphere

Superior Parietal Gyrus left hemisphere

Precuneus left hemisphere

Supramarginal Gyrus left hemisphere

Middle Temporal Gyrus left hemisphere

Superior Temporal Pole left hemisphere

Superior Temporal Gyrus left hemisphere
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These regions are illustrated in Figure 5. The intensity of colors in the image does not reflect the

amount or the percentage of stationarity/non-stationarity but rather reflects depth of the region in

the brain. So the regions that are deep in the brain have low intensities, whereas the regions that

are closer to the cortex have a higher intensity.

Figure 5: Brain regions found stationary in all participants. Brain images are shown in the sequence:

Front-Back, Right-Left, Bottom-Top.

5 Discussion

The human brain has been viewed as one of the most complicated physiological networks [40].

Researchers try to understand how brain networks respond and interact to different stimuli using

neuroimaging techniques. Our investigation informed us about the suitability of potential signal

processing tools to be used to evaluate and establish the complex brain functional networks and

connectivity matrices. To establish such connectivity matrices and analyze them, we need to utilize

graph-theoretical approaches which have been shown to provide a powerful new way to quantify and
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analyze brain structural and functional networks [12]. Such tools were initially applied to fMRI time

series [41], as a way to identify functional clusters of activated brain regions during a finger tapping

task. Since then, the graph theory has become a leading approach to analyze brain networks

when researchers were also able to find strong and significant correlations between locally and

distant (intra- and inter-hemispheric) brain regions [40]. However, one of the first steps in utilizing

the graph-theoretical approaches is to compute a measure of correlation among the considered

brain regions. Previous studies utilized cross-correlation [42], cross-coherence [43], and mutual

information [5] among others. However, given that some fMRI time series are non-stationary,

approaches resistant to non-stationarities should be considered (e.g., wavelets [44], [45], [46]).

We observed fewer non-stationarities in R3 than in R1, even-though the signal was acquired

under the same stimuli and the same experimental procedure. This could be interpreted as a

result of “priming” a phenomenon defined as “a change in the speed, bias or accuracy of the

processing of a stimulus, following prior experience with the same, or a related, stimulus” [47].

The implicit memory phenomenon, known as direct or repetition priming, has been considered

as one of the three different categories of priming [48]. From the brain activation point of view,

implicit memory captures the effect of previous experience on the current experiment, even in the

absence of conscious awareness of the past [47], [49], [50], [51], [52]. Moreover, repetition can also

be another main reason of decreased brain activation and blood flow level in the repeated task

R3. Neural activity usually decreases for repeating stimuli [53]. In particular, Gruber and Muller

have discussed the repetition priming task using electroencephalogram technology [54] by analyzing

the induced gamma band activity during the repetition of familiar and unfamiliar line drawings.

Penhune and Doyon have also discussed such phenomenon and revealed a dynamic network of motor

structures which have different activation during different phases of learning and repetition. They

have shown that the recall of motor sequences in humans is mediated predominantly by cortical

networks which suggest the involvement of cerebellar mechanisms in the early learning procedures.

These cerebellar mechanisms are no longer recalled or involved in the repeated tasks [55].

Repetition suppression has also been observed using fMRI and PET technologies; referred to as

the “response suppression phenomenon” [56] or “decremental responses” [57]. Processing a stimuli

more than once will produce what is called the “sharpening phenomenon” of the stimuli’s cortical

representation. This can be explained as some of the neurons that processed and coded the stimuli

at the beginning will exhibit a lower response in the repeated task showing “a response suppression

phenomenon.” The lower response from the previous neurons decreases the mean firing rate of a

neuron population resulting in a decrease in the captured fMRI signal [47].
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6 Conclusion

In this paper, we have successfully investigated the stationarity of fMRI time series in 12 healthy

participants while they performed motor sequence learning foot tapping tasks in three different

runs. We found that stationarity and non-stationarity were not concentrated or found in specific

brain regions so that further analysis and interpretation can be introduced. We showed that some

of the extracted time series are non-stationary, primarily in the form of time-varying mean. The

finding reported in this study provide a new insight into what approach should be considered

prior to establishing the connectivity matrices. Our results have implications for future studies as

researchers should utilize techniques robust for non-stationarities.
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